20Apr

This AI Paper from CMU Introduces AgentKit: A Machine Learning Framework for Building AI Agents Using Natural Language


Agent-based systems in Artificial Intelligence are ones where AI agents perform tasks autonomously within digital environments. Developing intelligent agents that can understand complex instructions and interact dynamically with their environment poses a significant technological challenge. A prevalent issue in agent design is the reliance on sophisticated programming techniques. Traditionally, agents are constructed using code-intensive methods, necessitating a deep familiarity with specific APIs and often restricting flexibility. Such approaches can stifle innovation and accessibility, limiting the potential applications of AI agents outside specialized domains.

Existing research includes the integration of LLMs like GPT-4 and Chain-of-Thought prompting in agent systems for enhanced planning and interaction. Frameworks like LangChain have refined agent operations, enabling more responsive task management. Innovations by researchers have applied these models to complex scenarios like open-world gaming, using structured prompting to guide agent behavior effectively. These models and frameworks demonstrate a significant shift towards more adaptable and intuitive AI architectures, facilitating dynamic responses and detailed task execution in varying environments.

In a collaborative effort, researchers from Carnegie Mellon University, NVIDIA, Microsoft, and Boston University have introduced AgentKit, a framework enabling users to construct AI agents using natural language instead of code. This method is distinct because it employs a graph-based design where each node represents a sub-task defined by language prompts. This structure allows complex agent behaviors to be pieced together intuitively, enhancing user accessibility and system flexibility.

AgentKit employs a structured methodology, mapping each task to a directed acyclic graph (DAG) node. These nodes, representing individual tasks, are interconnected based on task dependencies, ensuring logical progression and systematic execution. As mentioned, the nodes utilize LLMs, specifically GPT-4, to interpret and generate responses to natural language prompts. The framework dynamically adjusts these nodes during execution, allowing real-time response to environmental changes or task demands. Each node’s output is fed into subsequent nodes, maintaining a continuous and efficient workflow. The methodology is geared towards both flexibility in task management and precision in executing complex sequences of operations.

In testing, AgentKit significantly enhanced task efficiency and adaptability. For instance, the Crafter game simulation improved task completion by 80% compared to existing methods. In the WebShop scenario, AgentKit achieved a 5% higher performance than state-of-the-art models, showcasing its effectiveness in real-time decision-making environments. These results confirm AgentKit’s capability to manage complex tasks through intuitive setups. They illustrate its practical applicability across diverse application domains, achieving robust and measurable improvements in agent-based task execution.

To conclude, AgentKit represents a significant advancement in AI agent development, simplifying the creation of complex agents through natural language prompts instead of traditional coding. By integrating a graph-based design with large language models like GPT-4, AgentKit allows users to dynamically construct and modify AI behaviors. The framework’s successful application in diverse scenarios, such as gaming and e-commerce, demonstrates its effectiveness and versatility. This research highlights the potential for broader adoption of intuitive, accessible AI technologies in various industries.


Check out the Paper and GithubAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


For Content Partnership, Please Fill Out This Form Here..


Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.






Source link

19Apr

Megalodon: A Deep Learning Architecture for Efficient Sequence Modeling with Unlimited Context Length


Developing and enhancing models capable of efficiently managing extensive sequential data is paramount in modern computational fields. This necessity is particularly critical in natural language processing, where models must process long text streams seamlessly, retaining context without compromising processing speed or accuracy. One of the key challenges within this scope is the traditional reliance on Transformer architectures, which, despite their broad adoption, suffer from quadratic computational complexity. 

Existing research includes the Transformer architecture, which, despite its efficacy, suffers from high computational costs with longer sequences. Alternatives like linear attention mechanisms and state space models have been developed to reduce this cost, though often at the expense of performance. With its gated attention mechanism and exponential moving average, the LLAMA model and the MEGA architecture aim to address these limitations. However, these models still face challenges in scaling and efficiency, particularly in large-scale pretraining and handling extended data sequences.

Researchers from Meta, the University of Southern California, Carnegie Mellon University, and the University of California San Diego have introduced MEGALODON, a model designed to efficiently handle sequences of unlimited length—a capability that existing models struggle with. By integrating a Complex Exponential Moving Average (CEMA) and timestep normalization, MEGALODON offers reduced computational load and improved scalability, distinguishing itself from traditional Transformer models exhibiting quadratic computational growth with sequence length.

MEGALODON employs a combination of CEMA, timestep normalization, and a normalized attention mechanism. These technical components are crucial for modeling long sequences with high efficiency and low memory cost. The model has been rigorously tested on various language processing benchmarks, including multi-turn conversations, long-document comprehension, and extensive language modeling tasks. MEGALODON was benchmarked against datasets specifically designed for long-context scenarios, such as the Scrolls dataset for long-context QA tasks and PG19, which consists of long literary texts to demonstrate its efficacy and versatility. 

MEGALODON demonstrated quantifiable improvements in performance metrics. It recorded a training loss of 1.70, positioned between LLAMA2-7B, which registered a loss of 1.75, and LLAMA2-13B at 1.67. Regarding specific benchmarks, MEGALODON outperformed a standard Transformer model by achieving a lower perplexity rate on the Scrolls dataset, measuring at 23, compared to the Transformer’s 30. These results affirm MEGALODON‘s advanced processing capabilities for lengthy sequential data, substantiating its efficiency and effectiveness across varied linguistic tasks.

To conclude, the MEGALODON model marks a significant advancement in sequence modeling, addressing the inefficiencies of traditional Transformer architectures with innovative approaches like CEMA and timestep normalization. By achieving a training loss of 1.70 and demonstrating improved performance on challenging benchmarks such as the Scrolls dataset, MEGALODON proves its capability to handle extensive sequences effectively. This research enhances the processing of long data sequences and sets a new standard for future developments in natural language processing and related fields.


Check out the PaperAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


For Content Partnership, Please Fill Out This Form Here..


Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.






Source link

18Apr

Hugging Face Researchers Introduce Idefics2: A Powerful 8B Vision-Language Model Elevating Multimodal AI Through Advanced OCR and Native Resolution Techniques


As digital interactions become increasingly complex, the demand for sophisticated analytical tools to understand and process this diverse data intensifies. The core challenge involves integrating distinct data types, primarily images, and text, to create models that can effectively interpret and respond to multimodal inputs. This challenge is critical for applications ranging from automated content generation to enhanced interactive systems.

Existing research includes models like LLaVa-NeXT and MM1, which are known for their robust multimodal capabilities. The LLaVa-NeXT series, particularly the 34B variant, and MM1-Chat models have set benchmarks in visual question answering and image-text integration. Gemini models like Gemini 1.0 Pro further push performance in complex AI tasks. DeepSeek-VL specializes in visual question answering, while Claude 3 Haiku excels in generating narrative content from visual inputs, showcasing diverse approaches to blending visual and textual data within AI frameworks.

Hugging Face Researchers have introduced Idefics2, a powerful 8B parameter vision-language model designed to enhance the integration of text and image processing within a single framework. This method contrasts with previous models, which often required the resizing of images to fixed dimensions, potentially compromising the detail and quality of visual data. This capability, derived from the NaViT strategy, enables Idefics2 to process visual information more accurately and efficiently. Integrating visual features into the language backbone via learned Perceiver pooling and an MLP modality projection further distinguishes this model, facilitating a deeper and more nuanced understanding of multimodal inputs.

The model was pre-trained on a blend of publicly available resources, including Interleaved web documents, image-caption pairs from the Public Multimodal Dataset and LAION-COCO, and specialized OCR data from PDFA, IDL, and Rendered-text. Moreover, Idefics2 was fine-tuned using “The Cauldron,” a carefully curated compilation of 50 vision-language datasets. This fine-tuning phase employed technologies like Lora for adaptive learning and specific fine-tuning strategies for newly initialized parameters in the modality connector, which underpins the distinct functionalities of its various versions—ranging from the generalist base model to the conversationally adept Idefics2-8B-Chatty, poised for release. Each version is designed to excel in different scenarios, from basic multimodal tasks to complex, long-duration interactions.

Versions of Idefics2:

Idefics2-8B-Base:

This version serves as the foundation of the Idefics2 series. It has 8 billion parameters and is designed to handle general multimodal tasks. The base model is pre-trained on a diverse dataset, including web documents, image-caption pairs, and OCR data, making it robust for many basic vision-language tasks.

Idefics2-8B:

The Idefics2-8B extends the base model by incorporating fine-tuning on ‘The Cauldron,’ a specially prepared dataset consisting of 50 manually curated multimodal datasets and text-only instruction fine-tuning datasets. This version is tailored to perform better on complex instruction-following tasks, enhancing its ability to understand and process multimodal inputs more effectively.

Idefics2-8B-Chatty (Coming Soon):

Anticipated as an advancement over the existing models, the Idefics2-8B-Chatty is designed for long conversations and deeper contextual understanding. It is further fine-tuned for dialogue applications, making it ideal for scenarios that require extended interactions, such as customer service bots or interactive storytelling applications.

Improvements over Idefics1:

  • Idefics2 utilizes the NaViT strategy for processing images in native resolutions, enhancing visual data integrity.
  • Enhanced OCR capabilities through specialized data integration improve text transcription accuracy.
  • Simplified architecture using vision encoder and Perceiver pooling boosts performance significantly over Idefics1.

In testing, Idefics2 demonstrated exceptional performance across multiple benchmarks. The model achieved an 81.2% accuracy in Visual Question Answering (VQA) on standard benchmarks, significantly surpassing its predecessor, Idefics1. Furthermore, Idefics2 showed a 20% improvement in character recognition accuracy in document-based OCR tasks compared to earlier models. The enhancements in OCR capabilities specifically reduced the error rate from 5.6% to 3.2%, establishing its efficacy in practical applications requiring high levels of accuracy in text extraction and interpretation.

To conclude, the research introduced Idefics2, a visionary vision-language model that integrates native image resolution processing and advanced OCR capabilities. The model demonstrates significant advancements in multimodal AI, achieving top-tier results in visual question answering and text extraction tasks. By maintaining the integrity of visual data and enhancing text recognition accuracy, Idefics2 represents a substantial leap forward, promising to facilitate more accurate and efficient AI applications in fields requiring sophisticated multimodal analysis.


Check out the HF Project Page and Blog. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


For Content Partnership, Please Fill Out This Form Here..


Nikhil is an intern consultant at Marktechpost. He is pursuing an integrated dual degree in Materials at the Indian Institute of Technology, Kharagpur. Nikhil is an AI/ML enthusiast who is always researching applications in fields like biomaterials and biomedical science. With a strong background in Material Science, he is exploring new advancements and creating opportunities to contribute.






Source link

17Apr

Dataset Reset Policy Optimization (DR-PO): A Machine Learning Algorithm that Exploits a Generative Model’s Ability to Reset from Offline Data to Enhance RLHF from Preference-based Feedback


Reinforcement Learning (RL) continuously evolves as researchers explore methods to refine algorithms that learn from human feedback. This domain of learning algorithms deals with challenges in defining and optimizing reward functions critical for training models to perform various tasks ranging from gaming to language processing.

A prevalent issue in this area is the inefficient use of pre-collected datasets of human preferences, often overlooked in the RL training processes. Traditionally, these models are trained from scratch, ignoring existing datasets’ rich, informative content. This disconnect leads to inefficiencies and a lack of utilization of valuable, pre-existing knowledge. Recent advancements have introduced innovative methods that effectively integrate offline data into the RL training process to address this inefficiency.

Researchers from Cornell University, Princeton University, and Microsoft Research introduced a new algorithm, the Dataset Reset Policy Optimization (DR-PO) method. This method ingeniously incorporates preexisting data into the model training rule and is distinguished by its ability to reset directly to specific states from an offline dataset during policy optimization. It contrasts with traditional methods that begin every training episode from a generic initial state.

The DR-PO method enhances offline data by allowing the model to ‘reset’ to specific, beneficial states already identified as useful in the offline data. This process reflects real-world conditions where scenarios are not always initiated from scratch but are often influenced by prior events or states. By leveraging this data, DR-PO improves the efficiency of the learning process and broadens the application scope of the trained models.

DR-PO employs a hybrid strategy that blends online and offline data streams. This method capitalizes on the informative nature of the offline dataset by resetting the policy optimizer to states previously identified as valuable by human labelers. The integration of this method has demonstrated promising improvements over traditional techniques, which often disregard the potential insights available in pre-collected data.

DR-PO has shown outstanding results in studies involving tasks like TL;DR summarization and the Anthropic Helpful Harmful dataset. DR-PO has outperformed established methods like Proximal Policy Optimization (PPO) and Direction Preference Optimization (DPO). In the TL;DR summarization task, DR-PO achieved a higher GPT4 win rate, enhancing the quality of generated summaries. In head-to-head comparisons, DR-PO’s approach to integrating resets and offline data has consistently demonstrated superior performance metrics.

In conclusion, DR-PO presents a significant breakthrough in RL. DR-PO overcomes traditional inefficiencies by integrating pre-collected, human-preferred data into the RL training process. This method enhances learning efficiency by utilizing resets to specific states identified in offline datasets. Empirical evidence demonstrates that DR-PO surpasses conventional approaches such as Proximal Policy Optimization and Direction Preference Optimization in real-world applications like TL;DR summarization, achieving superior GPT4 win rates. This innovative approach streamlines the training process and maximizes the utility of existing human feedback, setting a new benchmark in adapting offline data for model optimization.


Check out the Paper and GithubAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


Want to get in front of 1.5 Million AI Audience? Work with us here


Hello, My name is Adnan Hassan. I am a consulting intern at Marktechpost and soon to be a management trainee at American Express. I am currently pursuing a dual degree at the Indian Institute of Technology, Kharagpur. I am passionate about technology and want to create new products that make a difference.






Source link

17Apr

AutoCodeRover: An Automated Artificial Intelligence AI Approach for Solving Github Issues to Autonomously Achieve Program Improvement


Large Language Models (LLMs) have significantly advanced such that development processes have been further revolutionized by enabling developers to use LLM-based programming assistants for automated coding jobs. Writing code is only one aspect of software engineering; another is ongoing program improvement to support feature additions and issue fixes, as well as software evolution.

In recent research, a team of researchers from the National University of Singapore has provided an automated method for handling GitHub issues in order to automatically improve the quality of programs by adding new features and fixing bugs. The approach, known as AutoCodeRover, combines advanced code search capabilities with LLMs to produce program patches or updates. 

Using abstract syntax trees (ASTs) in particular, the team has concentrated on program representation rather than viewing a software project as merely a collection of files. Through iterative search operations, their code search methodology effectively facilitates effective context retrieval by leveraging the program’s structure, including classes and methods, to improve the LLM’s understanding of the issue’s fundamental cause.

The foundation for the work is SWEbench-lite, a recent benchmark made out of 300 actual GitHub issues pertaining to feature additions and bug fixes. The outcomes of tests run on SWEbench-lite have shown how much more effective this method is at solving GitHub issues than previous attempts by the AI community by over 20%. In less than ten minutes on average, this approach fixed 67 GitHub issues; by comparison, the average developer took almost 2.77 days to resolve one issue.

The team has summarized their primary contributions as follows.

  1. The team has emphasized on working with program representations, particularly abstract syntax trees. This strategy is considered essential for promoting self-sufficient software engineering processes, emphasizing the significance of exploring the structural properties of code in greater detail.
  1. The study focuses on approaches to code search that imitate how software programmers think. Using program structures like classes, methods, and code snippets helps LLMs use context more efficiently by making the process of finding pertinent code context more like human thinking.
  1. The team has stressed the significance of giving automated repair’s effectiveness the upper hand over time efficiency, as long as realistic time criteria are met. They imposed a 10-minute time constraint on automated repair and found that it was 22% effective in fixing GitHub issues on SWE-bench-lite. This is far faster than the 2.77-day average for manual resolution.
  1. When addressing GitHub issues, the search for code has been guided by the integration of debugging and analysis techniques, specifically test-based fault localization. With this integration, efficacy has increased significantly; a single AutoCodeRover run on SWE-bench-lite shows a rise from 16% to 20%.

In conclusion, this approach opens the door for autonomous software engineering by anticipating a time when auto-generated code from LLMs can be automatically enhanced. With AutoCodeRover, overall productivity can be increased, and the software development process can be optimized by automating actions related to program enhancement, such as adding new features and correcting bugs.


Check out the PaperAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


Want to get in front of 1.5 Million AI Audience? Work with us here


Tanya Malhotra is a final year undergrad from the University of Petroleum & Energy Studies, Dehradun, pursuing BTech in Computer Science Engineering with a specialization in Artificial Intelligence and Machine Learning.
She is a Data Science enthusiast with good analytical and critical thinking, along with an ardent interest in acquiring new skills, leading groups, and managing work in an organized manner.






Source link

16Apr

Researchers at Stanford Propose a Family of Representation Finetuning (ReFT) Methods that Operates on a Frozen Base Model and Learn Task-Specific Interventions on Hidden Representations


Pretrained language models (LMs) are commonly finetuned to adapt them to new domains or tasks, a process known as finetuning. While finetuning allows for adaptation to various functions with small amounts of in-domain data, it can be prohibitively expensive for large LMs. 

Parameter-efficient finetuning (PEFT) methods offer a solution by updating only a fraction of the weights, reducing memory usage and training time. Adapters, a common PEFT approach, learn edits that can be added to a subset of model weights or operate alongside the frozen base model. Recent advancements like LoRA and its variants reduce the number of trainable parameters by using low-rank approximations during adapter training.

However, a significant aspect of current PEFT methods is their focus on modifying weights rather than representations, despite prior research indicating that representations encode rich semantic information. Representation Finetuning (ReFT) methods have been proposed in response to this by a team of researchers from Stanford and Pr(Ai)2R Group.

Instead of adapting model weights, ReFT methods train interventions to manipulate a small fraction of model representations, steering model behaviors to solve downstream tasks at inference time. Their approach draws inspiration from recent work in LM interpretability, which intervenes on representations to identify causal mechanisms and steer model behaviors at inference time.

One notable instance of the ReFT family is the Low-rank Linear Subspace ReFT (LoReFT), which intervenes on hidden representations in the linear subspace spanned by a low-rank projection matrix. LoReFT builds directly on existing methods like distributed alignment search (DAS), demonstrating state-of-the-art performance on various benchmarks while using significantly fewer parameters than traditional PEFT methods. Their results suggest that ReFT methods offer more efficient and effective alternatives to weight-based PEFTs, deserving further exploration across different model families and domains.

Future research directions for ReFT include exploring its effectiveness on other model families and vision-language models and automating hyperparameter search. Additionally, investigating more effective interventions for specific tasks and exploring the power of learned orthogonal subspaces are areas of interest. ReFT advances neural network interpretability research and contributes insights back to the field, challenging traditional approaches to interpreting individual neurons in isolation.

In terms of evaluation practices, it’s essential to establish benchmarks that allow for fair comparisons of PEFTs and ReFTs, including compute- or time-matched hyperparameter-tuning comparisons and disallowing tuning or model selection based on the test set to mitigate overfitting and ensure real-world performance assessment.


Check out the Paper and GithubAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


Want to get in front of 1.5 Million AI Audience? Work with us here


Arshad is an intern at MarktechPost. He is currently pursuing his Int. MSc Physics from the Indian Institute of Technology Kharagpur. Understanding things to the fundamental level leads to new discoveries which lead to advancement in technology. He is passionate about understanding the nature fundamentally with the help of tools like mathematical models, ML models and AI.






Source link

15Apr

This AI Paper from SambaNova Presents a Machine Learning Method to Adapt Pretrained LLMs to New Languages


The rapid advancement of large language models has ushered in a new era of natural language processing capabilities. However, a significant challenge persists: most of these models are primarily trained on a limited set of widely spoken languages, leaving a vast linguistic diversity unexplored. This limitation not only restricts the accessibility of cutting-edge language technologies but also perpetuates a technological divide across linguistic communities.

Researchers have tackled this challenge in this study by proposing a novel AI method named SambaLingo. This approach aims to adapt existing, high-performing language models to new languages, leveraging the strengths of pre-trained models while tailoring them to the unique characteristics of the target language.

Previous efforts to address this issue have primarily focused on training monolithic multilingual or language-specific models from scratch. However, these approaches face significant hurdles, including the curse of multilinguality, data scarcity, and the substantial computational resources required. Adapting English-centric models to new languages has emerged as a promising alternative, demonstrating the potential to outperform language-specific models pre-trained from scratch.

The SambaLingo methodology begins with the selection of a suitable base model that has already exhibited exceptional performance in its initial language. In this study, the researchers chose the open-source Llama2 7B model, renowned for its English language capabilities, as their starting point.

To effectively capture the linguistic nuances of the target language, the researchers expanded the model’s vocabulary by adding non-overlapping tokens from the target language and initializing them using sub-word embeddings from the original tokenizer. This crucial step ensures that the model can accurately tokenize and represent the new language, paving the way for seamless adaptation.

Next, the researchers employed a continual pre-training approach, feeding the model a carefully curated mixture of English and target language web data sourced from CulturaX. The data mixture followed a 1:3 ratio, biased towards the target language, to strike a delicate balance between preserving the model’s existing knowledge and adapting it to the new linguistic landscape.

To further enhance the model’s alignment with human preferences, the researchers implemented a two-stage process: supervised fine-tuning (SFT) and direct preference optimization (DPO). During SFT, they utilized the ultrachat-200k dataset and its machine-translated version. For DPO, they employed ultra feedback and cai-conversation-harmless datasets, blending them with a 10:1 ratio of English to machine-translated data.

The researchers rigorously evaluated the SambaLingo models across various tasks and languages, including language modeling, translation, text classification, open-book and closed-book question answering, and various natural language understanding benchmarks as shown in Table 1. The models were tested on nine typologically diverse languages: Arabic, Thai, Turkish, Japanese, Hungarian, Russian, Bulgarian, Serbian, and Slovenian.

Across multiple benchmarks, the SambaLingo models consistently outperformed existing state-of-the-art models in these languages. For instance, on the perplexity benchmark, which measures language modeling performance, the SambaLingo models achieved lower perplexity scores than all existing baselines on a held-out set from their training data (Figure 1). Furthermore, when scaled to the larger Llama2 70B parameter scale, the SambaLingo models exhibited even better performance, surpassing their 7B counterparts across multiple benchmarks, despite being trained on fewer tokens.

To validate the quality of the model’s outputs and their alignment with human preferences, the researchers employed GPT-4 as an impartial judge, evaluating the model’s responses to real user prompts. The results were promising, with SambaLingo consistently outperforming other models in the same languages, as judged by GPT-4’s preferences and logical explanations.

In summary, the SambaLingo methodology represents a significant stride towards democratizing artificial intelligence across linguistic diversity. By leveraging the strengths of existing high-performing models and tailoring them to new linguistic landscapes, this approach offers a scalable and efficient solution to the challenge of language barriers. With its state-of-the-art performance and alignment with human preferences, SambaLingo paves the way for a future where the benefits of AI transcend linguistic boundaries, fostering inclusivity and accessibility for all.


Check out the PaperAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


Want to get in front of 1.5 Million AI Audience? Work with us here


Vineet Kumar is a consulting intern at MarktechPost. He is currently pursuing his BS from the Indian Institute of Technology(IIT), Kanpur. He is a Machine Learning enthusiast. He is passionate about research and the latest advancements in Deep Learning, Computer Vision, and related fields.






Source link

14Apr

Top Data Analytics Books to Read in 2024


In today’s data-driven world, data analytics plays a key role in helping organizations make better decisions, identify opportunities, and mitigate risks. Data analytics enables businesses to gain insights into customer preferences and market dynamics, enhancing overall performance. As such, the demand for competent analysts has increased significantly over the past few years. This article lists the top data analytics books one should read in 2024 to augment one’s skills and stay ahead in this rapidly evolving field.

Python for Data Analysis

“Python for Data Analysis” is a comprehensive guide to manipulating, processing, and cleaning datasets in Python. It covers the tools to load, clean, transform, merge, and reshape data, focusing on libraries like Pandas and Numpy. The book also teaches how to solve real-world problems with detailed examples.

Fundamentals of Data Analytics

This book is a guide to the data analytics process, providing a five-step framework to help readers start the journey of analyzing data. The book covers the data mining and machine learning principles and provides strategies to build a problem-solving mindset.

Data Analytics for Absolute Beginners

This book is aimed at beginners and provides an introduction to data, data visualization, business intelligence, and statistics. The book consists of numerous practical and visual examples, along with coding exercises in Python. It also covers some of the machine learning concepts like regression, classification, and clustering.

Everything Data Analytics

“Everything Data Analytics” is a beginner’s guide to data literacy that helps understand the process of turning data into insights. The book covers the process of data collection, management, and storage, along with the essential machine-learning algorithms necessary for analysis, like regression, classification, and clustering.

SQL for Data Analysis

“SQL for Data Analysis” covers improving one’s SQL skills and making the most of SQL as part of their workflow. The book provides some advanced techniques for transforming data into insights, covering topics like joins, window functions, subqueries, and regular expressions.

Advancing into Analytics

This is a practical guide for Excel users to help them gain an understanding of analytics and the data stack. The author covers the key statistical concepts with spreadsheets and helps Excel users transition to performing exploratory data analysis and hypothesis testing using Python and R.

Modern Data Analytics in Excel

This book covers the features of modern Excel and the powerful tools for analytics. The author teaches how to leverage tools like Power Query and Power Pivot to build repeatable data-cleaning processes and create relational data models and analysis measures. The book also covers using AI and Python for more advanced Excel reporting.

Data Visualization with Excel Dashboards and Reports

This book teaches how to analyze large amounts of data in Excel and report them in a meaningful way. It also teaches the fundamentals of data visualization and covers how to automate redundant reporting and analyses.

Data Analysis for Business, Economics, and Policy

This book is a practical guide to using tools to carry out data analysis to support better decision-making in business, economics, and policy. The book covers topics like data wrangling, regression analysis, and causal analysis, along with numerous case studies with real-world data.

Storytelling with Data

“Storytelling with Data” is a data visualization guide for business professionals. The book teaches how to convert the data into a high-impact visual story to resonate the message with the audience.

Fundamentals of Data Visualization

This book provides a guide to making informative and compelling figures that help convey a compelling story. The book also provides extensive examples of good and bad figures.

Data Visualization: A Practical Introduction

This book covers how to create compelling visualizations using R programming language, more specifically using the ggplot2 library. It covers topics like plotting continuous and categorical variables, grouping, summarizing, and transforming data for plotting, creating maps, and refining plots to make them more understandable.

Naked Statistics

“Naked Statistics” is a beginner-friendly book focusing on the underlying intuition driving statistical analysis. The book covers topics like inference, correlation, and regression analysis in a witty and funny manner, which simplifies the learning process.

The Art of Statistics

“The Art of Statistics” is a practical guide to using data and mathematics to understand real-world problems better. The book covers how to clarify questions and assumptions and interpret the results.

Essential Math for Data Science

This book teaches the mathematics essential for excelling in data science, machine learning, and statistics. It covers topics like calculus, probability, linear algebra, and statistics, as well as their applications in algorithms like linear regression and neural networks.

Practical Statistics for Data Scientists

This book covers how to apply statistical methods to data science using programming languages like Python and R. It emphasizes the importance of exploratory data analysis and also covers the underlying statistical concepts behind supervised and unsupervised machine learning algorithms. 

Business unIntelligence

This book talks about the ever-changing and complex business intelligence landscape in today’s world. It covers numerous new models that businesses can leverage to design support systems for future successful organizations.

Data Science for Business

This book covers how organizations can leverage data science to gain a competitive advantage. It talks about general concepts that are useful in extracting knowledge from data. The book also provides various real-world examples to explain different concepts.

The Model Thinker

This book guides how to organize, apply, and understand the data that is being analyzed to become a true data ninja. The book covers mathematical, statistical, and computational models such as linear regression and random walks and provides a toolkit for its readers to make them leverage data to their advantage.

Becoming a Data Head

“Becoming a Data Head” teaches how to think, speak, and understand data science and statistics. It also covers the recent trends in machine learning, text analytics, and artificial intelligence.


We make a small profit from purchases made via referral/affiliate links attached to each book mentioned in the above list.

If you want to suggest any book that we missed from this list, then please email us at 

as**@ma**********.com












Shobha is a data analyst with a proven track record of developing innovative machine-learning solutions that drive business value.




Source link

13Apr

OmniFusion: Revolutionizing AI with Multimodal Architectures for Enhanced Textual and Visual Data Integration and Superior VQA Performance


Multimodal architectures are revolutionizing the way systems process and interpret complex data. These advanced architectures facilitate simultaneous analysis of diverse data types such as text and images, broadening AI’s capabilities to mirror human cognitive functions more accurately. The seamless integration of these modalities is crucial for developing more intuitive and responsive AI systems that can perform various tasks more effectively.

A persistent challenge in the field is the efficient and coherent fusion of textual and visual information within AI models. Despite numerous advancements, many systems face difficulties aligning and integrating these data types, resulting in suboptimal performance, particularly in tasks that require complex data interpretation and real-time decision-making. This gap underscores the critical need for innovative architectural solutions to bridge these modalities more effectively.

Multimodal AI systems have incorporated large language models (LLMs) with various adapters or encoders specifically designed for visual data processing. These systems are geared towards enhancing the AI’s capability to process and understand images in conjunction with textual inputs. However, they often do not achieve the desired level of integration, leading to inconsistencies and inefficiencies in how the models handle multimodal data.

Researchers from AIRI, Sber AI, and Skoltech have proposed an OmniFusion model relying on a pretrained LLM and adapters for visual modality. This innovative multimodal architecture synergizes the robust capabilities of pre-trained LLMs with cutting-edge adapters designed to optimize visual data integration. OmniFusion utilizes an array of advanced adapters and visual encoders, including CLIP ViT and SigLIP, aiming to refine the interaction between text and images and achieve a more integrated and effective processing system.

OmniFusion introduces a versatile approach to image encoding by employing both whole and tiled image encoding methods. This adaptability allows for an in-depth visual content analysis, facilitating a more nuanced relationship between textual and visual information. The architecture of OmniFusion is designed to experiment with various fusion techniques and architectural configurations to improve the coherence and efficacy of multimodal data processing.

OmniFusion’s performance metrics are particularly impressive in visual question answering (VQA). The model has been rigorously tested across eight visual-language benchmarks, consistently outperforming leading open-source solutions. In the VQAv2 and TextVQA benchmarks, OmniFusion demonstrated superior performance, with scores surpassing existing models. Its success is also evident in domain-specific applications, where it provides accurate and contextually relevant answers in fields such as medicine and culture.

Research Snapshot

In conclusion, OmniFusion addresses the significant challenge of integrating textual and visual data within AI systems, a crucial step for improving performance in complex tasks like visual question answering. By harnessing a novel architecture that merges pre-trained LLMs with specialized adapters and advanced visual encoders, OmniFusion effectively bridges the gap between different data modalities. This innovative approach surpasses existing models in rigorous benchmarks and demonstrates exceptional adaptability and effectiveness across various domains. The success of OmniFusion marks a pivotal advancement in multimodal AI, setting a new benchmark for future developments in the field.


Check out the Paper and Github. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


Want to get in front of 1.5 Million AI Audience? Work with us here


Hello, My name is Adnan Hassan. I am a consulting intern at Marktechpost and soon to be a management trainee at American Express. I am currently pursuing a dual degree at the Indian Institute of Technology, Kharagpur. I am passionate about technology and want to create new products that make a difference.






Source link

13Apr

This AI Paper from Meta and MBZUAI Introduces a Principled AI Framework to Examine Highly Accurate Scaling Laws Concerning Model Size Versus Its Knowledge Storage Capacity


Research on scaling laws for LLMs explores the relationship between model size, training time, and performance. While established principles suggest optimal training resources for a given model size, recent studies challenge these notions by showing that smaller models with more computational resources can outperform larger ones. Despite understanding emergent behaviors in large models, there needs to be more quantitative analysis on how model size affects its capacity post-sufficient training. Traditional theories propose that increasing model size improves memorization, generalization, and fitting complex functions, but practical outcomes often deviate due to overlooked factors.

Researchers from Meta/FAIR Labs and Mohamed bin Zayed University of AI have devised a systematic framework to investigate the precise scaling laws governing the relationship between the size of LMs and their capacity to store knowledge. While it’s commonly assumed that larger models can hold more knowledge, the study aims to determine whether the total knowledge scales linearly with model size and what constant defines this scaling. Understanding this constant is pivotal for evaluating the efficiency of transformer models in knowledge storage and how various factors like architecture, quantization, and training duration impact this capacity. They train language models of varying sizes by defining knowledge as (name, attribute, value) tuples and generating synthetic datasets. They evaluate their knowledge storage efficiency by comparing trainable parameters to the minimum bits required to encode the knowledge.

Language models store factual knowledge as tuples, each consisting of three strings: (name, attribute, and value). The study estimates the number of knowledge bits a language model can store, with findings indicating that models can store 2 bits of knowledge per parameter. Training duration, model architecture, quantization, sparsity constraints, and data signal-to-noise ratio impact a model’s knowledge storage capacity. Prepending training data with domain names like wikipedia.org significantly increases a model’s knowledge capacity by allowing models to identify and prioritize domains rich in knowledge.

In the investigation, the researchers focus on factual knowledge represented as tuples, such as (USA, capital, Washington D.C.), and establish that language models can store approximately 2 bits of knowledge per parameter, even with quantization to int8. Moreover, they find that appending domain names to training data significantly enhances a model’s knowledge capacity, enabling language models to identify and prioritize domains rich in knowledge autonomously. Through controlled experiments, they elucidate how factors like training duration, architecture, quantization, sparsity constraints, and data signal-to-noise ratio affect a model’s knowledge storage capacity, offering valuable insights for developing and optimizing language models.

The study outlines key findings on language model capacity:

  • GPT2 consistently achieves a 2-bit per parameter capacity ratio across diverse data settings, implying a 7B model could exceed the knowledge in English Wikipedia.
  • Longer training time, with 1000 exposures per knowledge piece, is crucial for maintaining this ratio.
  • Model architecture influences capacity, with GPT2 outperforming LLaMA/Mistral due to gated MLP.
  • Quantization to int8 maintains capacity, while int4 reduces it.
  • Mixture-of-experts models slightly decrease capacity but remain efficient.
  • Junk data significantly reduces model capacity, but prepending useful data mitigates this effect. This systematic approach offers precise comparisons of models and insights into critical aspects like training time, architecture, quantization, and data quality.

In conclusion, researchers discovered a consistent pattern in investigating language model scaling laws: a fully-trained transformer model can effectively store 2 bits of knowledge per parameter, regardless of its size or other factors, such as quantization to int8. They explored the impact of various hyperparameters on these scaling laws, including training duration, model architectures, precision, and data quality. The methodology offers a rigorous framework for comparing model capabilities, aiding practitioners in decision-making regarding model selection and training. Moreover, the research lays the groundwork for addressing the fundamental question of optimal language model size, potentially informing future advancements toward achieving Artificial General Intelligence (AGI).


Check out the PaperAll credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

If you like our work, you will love our newsletter..

Don’t Forget to join our 40k+ ML SubReddit


Want to get in front of 1.5 Million AI Audience? Work with us here


Sana Hassan, a consulting intern at Marktechpost and dual-degree student at IIT Madras, is passionate about applying technology and AI to address real-world challenges. With a keen interest in solving practical problems, he brings a fresh perspective to the intersection of AI and real-life solutions.






Source link

Protected by Security by CleanTalk